41,538 research outputs found

    Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response

    Full text link
    The cosmic strings(CSs) may be one important source of gravitational waves(GWs), and it has been intensively studied due to its special properties such as the cylindrical symmetry. The CSs would generate not only usual continuous GW, but also impulsive GW that brings more concentrated energy and consists of different GW components broadly covering low-, intermediate- and high-frequency bands simultaneously. These features might underlie interesting electromagnetic(EM) response to these GWs generated by the CSs. In this paper, with novel results and effects, we firstly calculate the analytical solutions of perturbed EM fields caused by interaction between impulsive cylindrical GWs (would be one of possible forms emitted from CSs) and background celestial high magnetic fields or widespread cosmological background magnetic fields, by using rigorous Einstein - Rosen metric. Results show: perturbed EM fields are also in the impulsive form accordant to the GW pulse, and asymptotic behaviors of the perturbed EM fields are fully consistent with the asymptotic behaviors of the energy density, energy flux density and Riemann curvature tensor of corresponding impulsive cylindrical GWs. The analytical solutions naturally give rise to the accumulation effect which is proportional to the term of distance^1/2, and based on it, we for the first time predict potentially observable effects in region of the Earth caused by the EM response to GWs from the CSs.Comment: 34 pages, 12 figure

    Parity-Violating Nuclear Force as derived from QCD Sum Rules

    Full text link
    Parity-violating nuclear force, as may be accessed from parity violation studies in nuclear systems, represents an area of nonleptonic weak interactions which has been the subject of experimental investigations for several decades. In the simple meson-exchange picture, parity-violating nuclear force may be parameterized as arising from exchange of \pi, \rho, \omega, or other meson(s) with strong meson-nucleon coupling at one vertex and weak parity-violating meson-nucleon coupling at the other vertex. The QCD sum rule method allows for a fairly complicated, but nevertheless straightforward, leading-order loop-contribution determination of the various parity-violating MNN couplings starting from QCD (with the nontrivial vacuum) and Glashow-Salam-Weinberg electroweak theory. We continue our earlier investigation of parity-violating \pi NN coupling (by Henley, Hwang, and Kisslinger) to other parity-violating couplings. Our predictions are in reasonable overall agreement with the results estimated on phenomenological grounds, such as in the now classic paper of Desplanques, Donoghue, and Holstein (DDH), in the global experimental fit of Adelberger and Haxton (AH), or the effective field theory (EFT) thinking of Ramsey-Musolf and Page (RP).Comment: 17 pages, 5 figure

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    Separation of variables for soliton equations via their binary constrained flows

    Full text link
    Binary constrained flows of soliton equations admitting 2×22\times 2 Lax matrices have 2N degrees of freedom, which is twice as many as degrees of freedom in the case of mono-constrained flows. For their separation of variables only N pairs of canonical separated variables can be introduced via their Lax matrices by using the normal method. A new method to introduce the other N pairs of canonical separated variables and additional separated equations is proposed. The Jacobi inversion problems for binary constrained flows are established. Finally, the factorization of soliton equations by two commuting binary constrained flows and the separability of binary constrained flows enable us to construct the Jacobi inversion problems for some soliton hierarchies.Comment: 39 pages, Amste
    corecore